sábado, 27 de febrero de 2010

ANDRÓMEDA EN INFRARROJO

Imagen obtenida por el telescopio infrarrojo WISE
Piblicada por la NASA el 19 de Febrero

LA LUZ



La naturaleza de la luz ha sido estudiada desde hace muchos años por científicos tan notables como Newton, Max Plank, Fresnel, Maxwell etc, dando lugar a distintas y enfrentadas teorías sobre su naturaleza. La actualmente aceptada es que la luz es un fenómeno único en la naturaleza debido a su carácter dual: partícula (fotón) y onda, masa y energía. A diferencia de las ondas sonoras, que por su naturaleza mecánica necesitan de una sustancia portadora que transmita su vibración, las ondas electromagnéticas se pueden transmitir en el vacío. También pueden atravesar sustancias en función de su frecuencia (rayos X, rayos gamma). La luz, es una forma de energía, que se transmite por el espacio en ondas sinoidales, similares a las producidas cuando lanzamos una piedra a un estanque. Nace en la fuente que la produce (el sol, una lámpara, etc.) y se propaga en línea recta hasta encontrar un objeto que la intercepte. Pertenece a la familia de las radiaciones electromagnéticas, todas ellas poseen las mismas características (energía emitida en forma de ondas) pero sus diferencias en cuanto a longitud de onda pueden ser enormes. Las radiaciones electromagnéticas se extienden desde los rayos gamma hasta las ondas de radio es decir, desde longitudes de onda más cortas (rayos gamma, rayos X), hasta las kilométricas (telecomunicaciones). En fotografía se hace mención frecuente de la longitud de onda que, al ser una distancia, se mide en metros. Para las más cortas se utilizan submúltiplos como el nanómetro (millonésima de milímetro) mientras que las más largas se miden en centímetros, metros e incluso kilómetros.

Las ondas del espectro electromagnético se miden por tres parámetros: longitud de onda, frecuencia y amplitud.
La frecuencia se define como el número de ondas completas o ciclos medidos por segundo, también denominados hercios (Hz).

La longitud de onda se define como la distancia lineal ocupada por una onda completa o ciclo medida horizontalmente es decir, la distancia entre dos crestas o dos valles.
Ambas magnitudes (frecuencia y longitud de onda) no son independientes sino inversamente proporcionales: a menor distancia entre dos crestas de onda, más cantidad de ondas encajarán en un período de tiempo de un segundo. Si la frecuencia es alta la longitud de onda es corta y viceversa.
La relación entre entre frecuencia y longitud de onda viene determinada por la ecuación F=C/λ donde C es la velocidad de la luz en el vacio (300.000 km/s) y λ la longitud de onda expresada en metros.
La intensidad o amplitud, es la altura de las crestas de las ondas y en el caso de la luz, determina su brillo o intensidad.
La luz se propaga a partir de la fuente emisora en todas las direcciones posibles y en forma de ondas perpendiculares a la dirección del desplazamiento. La orientación de las crestas respecto a la dirección de propagación determina el ángulo de polarización. La luz polarizada tiene importantes aplicaciones fotográficas.

En el espectro visible, nuestros ojos son detectores evolucionados para captar ondas de luz visible aunque existen muchos otros tipos de radiación que no podemos percibir. De hecho, solo podemos captar una parte mínima de la gama de radiaciones del espectro electromagnético que incluye, además de la radiación visible, los rayos gama, los rayos X, los rayos ultravioletas, los rayos infrarrojos, las microondas y las ondas de radio.
A medida que pasamos de los rayos gamma a las ondas de radio la longitud de onda aumenta y la frecuencia disminuye (también disminuyen la energía y la temperatura). Todos estos tipos de radiación viajan a la velocidad de la luz (unos 300.000 km/s en el vacío).
Además de la luz visible, también llegan a la superficie de la tierra desde el espacio ondas de radio, una parte del espectro infrarrojo y una parte (afortunadamente) muy pequeña de radiación ultravioleta.
Cada onda particular del espectro visible viene caracterizada por su longitud de onda siendo ésta junto con el sentido de la vista los únicos responsables del color observado, pues colores diferentes sólo corresponden a longitudes de onda diferentes. Si, como generalmente sucede, la radiación es compuesta, el ojo no puede analizar las distintas radiaciones o longitudes de onda que recibe y aprecia tan sólo el "color o tonalidad" resultante.

La luz visible es solamente una pequeña parte del espectro electromagnético, la longitud de onda comprendida entre aproximadamente 400 y 700 nanómetros (nm = millonésima de milímetro) y tiene una frecuencia de un millón de gigahercios (GHz), es decir, un billón de ciclos por segundo. Solo esta estrecha gama que va desde los 400 a los 700 nm, excita la retina del ojo produciendo sensaciones de color y brillo.

La luz blanca esta formada por la mezcla de todo el conjunto de radiaciones visibles monocromáticas que estimulan el ojo humano generando una sensación de luminosidad exenta de color, es una mezcla proporcionada de todas las longitudes de onda entre 400 y 700 nm. Se entiende por radiación monocromática a cada una de las posibles componentes de la luz, correspondientes a cada longitud de onda del espectro electromagnético.
Los estudios sobre el sistema visual humano, establecen que en el ojo existen unas células llamadas conos que reaccionan frente al color. Estas células se presentan en 3 tipos diferentes: un tipo de conos reacciona frente a longitudes de onda de la gama central del espectro (verdes), un segundo grupo de conos reaccionan ante la gama de tonos rojos, y un tercer tipo de conos, son especialmente excitados por la banda de tonos azules. Esta es la razón principal para que en cinematografía y televisión se hayan elegidos como colores primarios el rojo ( R ) el verde ( G ) y el azul ( B ).
La luz siempre produce calor en presencia de un cuerpo absorbente (en términos estrictos no existe la denominada "luz fría"), que destruyendo parte de la energía en forma radiante, la recupera transformándola en calor. Así, por ejemplo, no hay calor en los espacios vacíos entre el sol y la tierra, pero, al incidir la radiación solar en nuestra piel, una fracción se convierte en calor; en este sentido podemos afirmar que el sol calienta. La energía radiante además de convertirse en calor, produce otros fenómenos, entre los que destacan por su importancia el fotoquímico y fotoeléctrico, efectos que permiten la creación de imágenes en soporte fotoquímico (cine y fotografía) y soporte electrónico (televisión y vídeo).

El infrarrojo, demás de las radiaciones visibles, tienen importancia fotográfica las infrarrojas. Dentro del espectro electromagnético, la radiación infrarroja se encuentra comprendida entre el espectro visible y las microondas y ondas de radar. Las ondas infrarrojas tienen longitudes de onda más largas que la luz visible, pero más cortas que las microondas; por ondas, sus frecuencias son menores que las frecuencias de la luz visible y mayores que las frecuencias de las microondas.
El término infrarrojo cercano (también denominado infrarrojo reflejado o fotográfico) se refiere a la parte del espectro infrarrojo que se encuentra más próxima a la luz visible; el término infrarrojo lejano denomina la sección más cercana a la región de las microondas.
La fuente primaria de la radiación infrarroja es el calor o radiación térmica. Cualquier objeto que tenga una temperatura superior al cero absoluto (-273,15 °C, o 0 grados Kelvin), irradia ondas en la banda infrarroja. Incluso los objetos que consideramos muy fríos —por ejemplo, un trozo de hielo—, emiten en la banda infrarroja. Cuando un objeto no está lo suficientemente caliente para irradiar ondas en el espectro visible, emite la mayoría de su energía como ondas infrarrojas. Por ejemplo, es posible que un trozo de carbón encendido no emita luz visible, pero emite radiación infrarroja que sentimos como calor. Cuanto más caliente se encuentre un objeto, tanta más radiación infrarroja emitirá. Sentimos los efectos de la radiación infrarroja cada día, el calor de la luz del sol, del fuego o de un radiador de calefacción provienen del infrarrojo, aunque no podemos ver la radiación, las terminaciones nerviosas en nuestra piel pueden sentirla como calor (diferencia entre la temperatura interior del cuerpo y la exterior a la piel). A su temperatura vital normal, los seres vivos irradian intensamente infrarrojos.

La fotografía infrarroja brinda información que no podríamos obtener a través de una imagen de luz visible. En completa oscuridad, los visores infrarrojos pueden ver objetos gracias a que los mismos irradian calor.

La luz se propaga a partir de la fuente emisora en todas las direcciones posibles y en forma de ondas perpendiculares a la dirección del desplazamiento. Distintas longitudes de onda proporcionan a nuestros ojos distintas sensaciones de color. La luz se propaga, sin detenerse, a través de la atmósfera y aun donde no hay atmósfera, y se sigue propagando indefinidamente mientras no encuentre un obstáculo que impida su paso
La luz viaja en línea recta dentro de una sustancia de composición uniforme mientras no haya nada que la desvíe y mientras no cambie el medio a través del cual se está propagando. La propagación en línea recta se puede apreciar en los rayos de sol cuando atraviesan una atmósfera turbia, por ejemplo sobre niebla en un bosque o en los rayos producidos por iluminación espectacular en escenarios con humo artificial.
La luz se desplaza a la velocidad de 300.000 km/s en el vacío. En el aire se mueve ligeramente más despacio y todavía más lentamente a través de sustancias más densas como el agua o el vidrio.
La luz está compuesta por partículas de energía – llamados fotones – que originan cambios químicos y reacciones eléctricas. Obviamente, cuanto más intensa es la luz, más fotones contiene. Estas partículas de energía son las que hacen posible la grabación de imágenes en soportes fotosensibles.

Cuando un objeto no es transparente sino opaco a la luz, caso de la mayoría de los que nos rodean, absorbe una parte de la luz que recibe (convertida en débil energía calorífica) y refleja otra parte. Cuanto más oscuro es el material, menor es la luz reflejada, mayor la absorbida y por tanto mayor el calor acumulado (cualquier objeto negro expuesto al sol se calienta más que uno blanco).

CINTURON DE ASTEROIDES ENTRE MARTE Y JÚPITER

ASTEROIDE VESTA (17 Febreo 2010)


Vesta, se encuentra en el cinturon de asteroides que está entre Marte y Júpiter. Su velocidad aproximada es de 19,3 Km/s y tarda poco más de tres años en darle la vuelta al Astro Rey.
Su diametro medio es algo irregular puede ser de 578 Km y 458km.
Tiene una deformidad en el sur, a consecuencia de un gran impacto ocurrido hace mil millones de años y que arrancó trozos de rocas del asteroide, que se encuentran orbitando junto a su progenitor. Es el Asteroide más brillante del cinturon, y es por lo que podemos distinguirlo con mayor facilidad cuando tenemos la oportunidad.
Esta foto tomada por Jesús & Pepa es todo un logro !! demuestra el desplazamiento o movimiento que tiene en 26 minutos.

miércoles, 10 de febrero de 2010

SATURNO (10-Febreo-2010)


Elegante y bonita imagen de este Saturno por Nicolás II

REFLEJO DEL SOL (Benacazón 8 de Febreo 2010)


Curiosamente se aprecia un reflejo del sol, en el verdor del paisaje.
Efectos de tirar en manual...supongo.

ORION EN EL CREPÚSCULO (8 de Febreo 2010)



Se abrió una clarita en el cielo, y no me lo pensé, cogí mi cámara, el trípode y me fuí para el miarador de Benacazón.

Aunque con algo de viento y frio, era tal mi deseo de que salieran las estrellas y poderles hacer algunas fotos, que me puse a colocar el trípode para la cámara y después, a contemplar el atardecer mientras hacia las primeras fotos en manual.

El rojizo Marte, fué la primera luz que ví en el cielo, a los pocos minutos, el brillante de Sirio, y después empezó a salir el gerrero de Orión.

Mientras le tiraba una foto a Orión con el disparador automático, qué sorpresa allá arriba!! un bólido de un blanco brilante rayó el cielo lentamente, qué bonito!!
Al otro dia se lo comuniqué a nuestro compañero Madiedo, que me lo confirmaría, como hizo en Agosto de 2008 con el tremendo bólido verde que ví en Estepa.
Pues ya van dos..el tercero de qué color será??